Invited Speakers Biography

Simon Cherry

Cherry-Simon_001Simon R. Cherry, Ph.D. is Professor in the Departments of Biomedical Engineering and Radiology at the University of California, Davis. His research interests center around biomedical imaging and in particular the development and application of in vivo molecular imaging systems. His early accomplishments were in developing and applying high resolution systems for positron emission tomography (PET), in particular the microPET technology that was subsequently widely adopted in academia and industry. He has contributed to the development of high performance detectors for PET, and to multimodality imaging systems, for example first demonstrations of hybrid PET/MRI systems. He currently co-leads the EXPLORER project which aims to develop the world’s first total-body PET/CT scanner. His laboratory also developed the concept of Cerenkov luminescence imaging as an innovative way to image beta-emitting radionuclides non-invasively using sensitive optical cameras and is currently exploring the use of Cerenkov radiation as an internal light source for phototherapy and for fast timing in PET. The technologies developed by his laboratory have been broadly applied in biomedical science to study diseases processes and measure the effects of therapeutic interventions. Dr. Cherry also serves as Editor-in-Chief of the journal Physics in Medicine and Biology and is lead author of the widely-used textbook Physics in Nuclear Medicine.

 Joel Karp


Dr. Karp is Professor of Radiologic Physics in the Department of Radiology, and in the Department of Physics & Astronomy at the University of Pennsylvania. He is Chief of the Physics and Instrumentation Research Group in Radiology and directs Nuclear Medicine/PET Physics and QC in the clinic, as well as the Small Animal Imaging Facility Nuclear Medicine (PET/SPECT/CT) core. He received his PhD in nuclear physics from MIT in 1980 and joined the faculty at Penn in 1983, and since then his research has focused on investigations to improve and characterize the performance of PET technology, including front-end electronics, detector design, data correction techniques, and 3D image reconstruction algorithms. This work has resulted in development of fully 3D PET scanners and innovative imaging systems based on various scintillation detectors, and some of these concepts have been implemented commercially for human and animal imaging. Dr. Karp has developed systems for time-of-flight (TOF) imaging, and his work with industry led to adoption of TOF in modern PET/CT scanners. Dr. Karp collaborates with UC Davis as part of the Explorer Consortium and is leading the team at U Penn in the development of the large axial FOV PennPET Explorer instrument. Dr. Karp has helped to organize scientific programs in the Society of Nuclear Medicine and the IEEE Nuclear and Plasma Sciences Society, as well as the Explorer Workshop at U Penn in fall 2017.


David A. Mankoff


Dr. David Mankoff is Gerd Muehllehner Professor of Radiology, Vice-Chair for Research in Radiology, and Director of the PET Center at the Perelman School of Medicine at the University of Pennsylvania. Dr. Mankoff is board-certified in Nuclear Medicine and holds a PhD in Bioengineering focusing on PET instrumentation. He practices Nuclear Medicine at the University of Pennsylvania, with a special interest in oncologic applications of molecular imaging and radionuclide treatment of endocrine tumors and other cancers. Dr. Mankoff’s research focuses on molecular imaging of cancer, primarily on breast cancer, and emphasizes therapeutic monitoring, identifying factors mediating therapeutic resistance, and the translation of new methods to clinical trials.   He also focuses on imaging methodology and quantitative imaging methods related to molecular cancer imaging. Dr. Mankoff is a Komen Scholar for the Susan G. Komen Foundation. He also Chairs the Experimental Imaging Sciences Committee and serves as Co-Chair of the Scientific Program Committee of ECOG-ACRIN. Dr. Mankoff is a past member and President of the American Board of Nuclear Medicine. Dr. Mankoff is on the editorial boards of Nuclear Medicine and Biology, Breast Cancer Research, Journal of Nuclear Medicine, The Breast Journal, and Clinical Cancer Research and serves as an Associate Editor for Breast Cancer Research and the Journal of Nuclear Medicine.

Terry Jones

Terry informal smaller 3Terry Jones is a medical physicist who has been involved in the development and applications of positron emitting radioisotopes in medicine since 1968. When at the former Medical Research Council’s, Cyclotron Unit, at Hammersmith Hospital, London, he initiated the UK’s first PET program in the late 1970’s. He undertook developments in PET methodology which included collaborations with industrial manufacturers of PET scanners. Together with medical colleagues at the Royal Postgraduate Medical School at Hammersmith Hospital, he fostered the research applications of PET methodology in Neurology, Psychiatry, Oncology, Cardiology and Pulmonary Medicine. He was awarded an MRC travelling fellowship in 1972 to work at the University of Washington St Louis and the MGH in Boston, where he recorded the first image of human brain metabolism by using oxygen-15. To support pre-clinical studies, he established the world’s first dedicated small–animal PET scanner. At the MRC Cyclotron Unit, he rose to the position of acting director and professor of medical physics at Imperial College London. He then went on to co-establish the state-of-the-art PET based Wolfson Molecular Imaging Centre at Manchester University where he was professor of Molecular Imaging. He has co-authored over 300 scientific publications. He is a fellow of the Institute of Physics and Engineering in Medicine and in 1999 was elected as a fellow of the UK’s Academy of Medical Science. He is currently visiting professor at the University of California, Davis and co-director of the PET Research Advisory Company. Currently he is engaged in identifying the clinical research applications of Total Body PET Scanning.


Dimitris Visvikis

10/10/13: IPEM, York.Dimitris Visvikis is a director of research with the National Institute of Health and Medical Research (INSERM) in France and the Director of the Medical Image Processing Lab in Brest (LaTIM, UMR1101). He obtained his PhD from the University of London in 1996 working in PET detector development within the Joint Department of Physics in the Royal Marsden Hospital and the Institute of Cancer Research. After working as a Senior Research Fellow in the Wolfson Brain Imaging Centre of the University of Cambridge he joined the Institute of Nuclear Medicine as Principal Medical Physicist in University College London where he introduced and worked for five years with one of the first clinical PET/CT systems in the world. He has spent the majority of his scientific activity in the field of PET imaging, including developments in both hardware and software domains. His current research interests focus on improvement in PET/CT image quantitation for specific oncology applications, such as response to therapy and radiotherapy treatment planning, through the development of methodologies for detection and correction of respiratory motion, 4D PET image reconstruction,  partial volume correction, tumour volume segmentation and tumour activity distribution characterisation algorithms, as well as the development and validation of Monte Carlo simulations for emission tomography and radiotherapy treatment dosimetry applications. He is a member of numerous professional societies such as IPEM (Fellow, Past Vice-President International), IEEE (Senior Member, Past NPSS NMISC chair), AAPM, SNM (CaIC board of directors 2007-2012), EANM. He is also the first Editor in Chief of the IEEE Transactions in Radiation and Plasma Medical Sciences.

Alexander Hammers


Alexander Hammers, MD, PhD, has been Head of the King’s College London & Guy’s and St Thomas’ PET Centre since 2013. He is Professor of Imaging and Neuroscience and currently Interim Head of School (with René Botnar), School of Biomedical Engineering and Imaging Sciences, at King’s. He is a Neurologist with a particular interest in epilepsy.

He trained in medicine at the RWTH Aachen, Germany, with visiting periods in Paris, France, and Exeter, UK. He trained in Neurology in Bayonne/France, Essen/Germany, and London/UK. Scientifically, he obtained an MD from the RWTH Aachen, Germany, in MR imaging of the hippocampus, and a PhD from the University of London in PET investigations in focal epilepsy, before leading his own group at the Medical Research Council’s Clinical Sciences Centre at Hammersmith Hospital/Imperial College London. He has held the Chair of Excellence in Functional Neuroimaging at the Neurodis Foundation, Lyon, France, 2009-2014, co-writing the grants that enabled France’s first PET-MR to be installed there, before joining King’s College London.

His research uses quantified PET to understand mechanisms of neurological disease. In structural neuroimaging, he uses MRI and anatomical segmentation using a large manually annotated brain atlas database which his group has created over the past decade (the Hammers_mith atlases). The main areas of application of his research are the epilepsies and, more recently, neurodegenerative diseases. The ultimate goal is to benefit individual patients through the clinical application of neuroscience, e.g. through classification with machine-learning techniques, or the combination of MRI and PET.

Having successfully developed protocols for scientifically and clinically exploiting the simultaneity of hybrid PET-MR scanners, he is now intrigued by the new possibilities of Total Body PET.

Pawel Moskal

Moskal_photo_1Pawel Moskal, Ph.D. is Professor of physics and the head of the Cluster of Nuclear Physics Departments and the Department of Particle Physics and Applications at the Jagiellonian University in Cracow, Poland.  He won the Prime Minister’s award for his doctoral dissertation in 1999 and a Gold Medal for the invention of the matrix device for Positron Emission Tomography at The World Exhibition on Innovation, Research and New Technologies at Brussels Innova 2009. Prof. Moskal has co-authored 18 patent applications and more than 280 scientific articles in the field of nuclear and particle physics and positron emission tomography. In the years 2015-2017 he was a member of the SPSC Scientific Committee at CERN.   At present he is leading the J-PET collaboration: an interdisciplinary research team at the Jagiellonian University conducting research and development of a new imaging device based on plastic scintillators. This research aims at the construction of a cost effective whole-body PET for experiments in fundamental physics, biophysics and medical diagnostics, e.g. for studies of discrete symmetries in the decays of positronium, the development and tests of multi-photon imaging, and the study of properties of positronium atoms in living organisms.

Prof. Moskal was coordinator of the COSY-11 international collaboration conducting experiments on meson production at the Cooler Synchrotron COSY at FZ-Jülich in Germany and deputy-coordinator of the WASA-at-COSY experiment, which comprises about 150 physicists testing fundamental symmetries in nature by means of the decays of mesons. He is also a member of the KLOE-2 collaboration conducting experiments at the electron-positron collider DAFNE in Italy. The KLOE-2 experiments include tests of quantum mechanics and searching for phenomena beyond the standard model of particle physics. Prof. Moskal chaired the scientific and organizing committees of thirteen international symposia and workshops devoted to fundamental and applied physics and served as the (co-)editor of the proceedings books.

Volkmar Schulz


Volkmar Schulz, Ph.D., is professor and head of the Department of Physics of Molecular Imaging Systems at the Institute for Experimental Molecular Imaging at RWTH Aachen University, Germany. He studied electrical engineering and received his Ph.D. in 2001 from the University of Paderborn in the field of integrated optics. In the year 2000, he joined the Philips Research Laboratories in Hamburg where he started his research carrier in the field of MRI physics and instrumentation. During this time, he contributed to various system developments, in particular to open magnet designs that allowed interventional MRI. In 2005, he moved to the Philips Research Laboratories in Aachen, where he focused his research on the combination of PET with MRI. His research interests cover PET and MRI physics, the combination of PET and MRI into a hybrid imaging modality, modality interference, system prototyping, and quantitative correction techniques. In 2013, he was appointed as full professor at RWTH Aachen University at the faculties of medicine and physics.

In the past 10 years, Volkmar received several EU grants. In 2008, he coordinated the EU-FP7 project HYPERImage, initiated and executed the EU-FP7 project SUBLIMA and recently received funding for his EU-H2020 project HYPMED, which translates the developed technology of the preclinical systems into a dedicated clinical PET-MRI system for breast cancer application. He successfully applied for local grants (DFG, ForSaTum, NRW, Germany; WellComeTrust, London, UK), that allowed the development of the world’s first simultaneous PET-MRI system for preclinical applications based on digital silicon photomultiplier technology. Jointly with the research center in Juelich, he is currently using the RWTH detector platform to build a Neuro-PET-MRI insert for 7 Tesla. Together with Philips and the University of Utrecht, he is developing a whole-body PET-MRI, which is intended to be used as a planning tool for radiotherapy (MR-LINAC). In the course of these projects, a fully scalable and MR-compatible readout system was developed, which will now be used to build a long-axial FOV-PET-MRI system. Volkmar is co-author of more than 60 patent applications and more than 100 papers.

Roel Van Holen


Prof. Roel Van Holen his track record is in (pre-) clinical PET, SPECT, CT and MRI. He holds a Masters in Electronics Engineering (2001) and Masters in Biomedical Engineering (2004). He obtained a PhD in Engineering (2009), was visiting postdoc at the University of Arizona (2010) and is currently Professor at Gent University MEDISIP (2011). Since 2012 he has been conducting research within the research group MEDISIP of the Department Electronics and Information Systems of the Ghent University. His research on multimodality imaging systems has resulted in five prototype systems. These systems have been commercialized by the spinoff Molecubes.  He is CEO of MOLECUBES and part time Associate Professor at Ghent University. He is author and co-author of over 50 publications in peer reviewed journals and has been promotor of 7 PhDs.


Stefaan Vandenberghe


Stefaan Vandenberghe has been appointed as full time research professor (BOF-ZAP) at UGent since October 2007 and leads the MEDISIP research group since 2008.  In collaboration with different researchers in the group a variety of topics is covered: Monte Carlo simulations, Time-of-Flight PET, PET-MRI and quantification for radionuclide dosimetry.   He obtained his MSc in Physics in 1996 and an additional degree in Biomedical Engineering in 1997 from KU Leuven. After working in the nuclear medicine department of the University Hospital Ghent (1997-1999) he started a Ph.D. in the MEDISIP group of the University of Ghent. He received a Ph.D. (Engineering) from this university in 2002. During his FWO postdoctoral research he worked on rotating slat systems (with solid state detectors) Monte Carlo simulations and natural pixel reconstruction. In 2004 he joined Philips Research USA (Briarcliff) to work as a Senior Scientist in the Clinical Site Program at the University of Pennsylvania (Dr. Joel Karp) in Philadelphia. During this period he worked on simulations, reconstructions and measurements for Time-Of-Flight PET systems (LaBr3 and LYSO. He was Associate Editor of IEEE Transactions on Nuclear Science (till 2017) and involved in the organization of conferences and workshop on PET-MR and SPECT-MR. He has initiated the Infinity small animal imaging lab.  The detector technology and micro SPECT and PET prototypes of the MEDISIP research group have led to the creation of the spinoff company Molecubes.  During the last years his research has focused on the development of  attenuation correction and PET system design simulations for PET-MR  and Total Body PET.  Since 2017 he is also the editor-in-chief of EJNMMI Physics and coordinates together with the Nuclear medicine unit the Innovative Imaging and Therapy Consortium of Ghent university and its hospital ( He co-authored about 100 scientific A1 journal papers and is co-inventor of four patents.